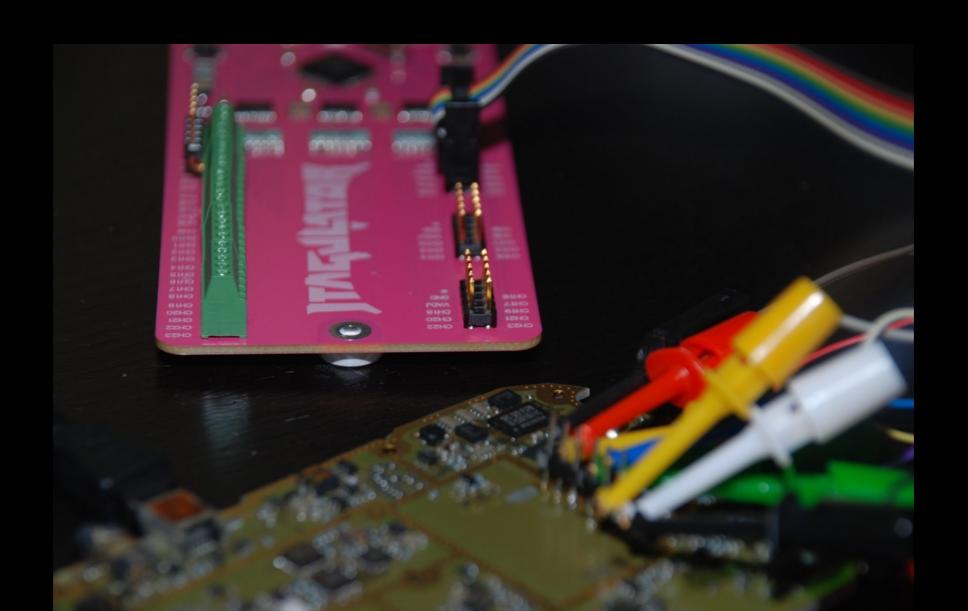


Assisted Discovery of On-Chip Debug Interfaces Joe Grand, Grand Idea Studio, Inc. www.jtagulator.com


Introduction

- On-chip debug interfaces are a well-known attack vector
 - Used as a stepping stone to further an attack
 - Extract program code or data
 - Modify memory contents
 - Affect device operation on-the-fly
 - Can provide chip-level control of a target device
- Identifying OCD interfaces can sometimes be difficult and/or time consuming

Goals

- Create an easy-to-use, open source tool to simplify the process
- Attract non-HW folks to HW hacking

Inspiration

- Hunz's JTAG Finder
 - http://elinux.org/JTAG_Finder
- JTAGenum & RS232enum
 - http://deadhacker.com/tools/
- DARPA Cyber Fast Track
 - www.cft.usma.edu

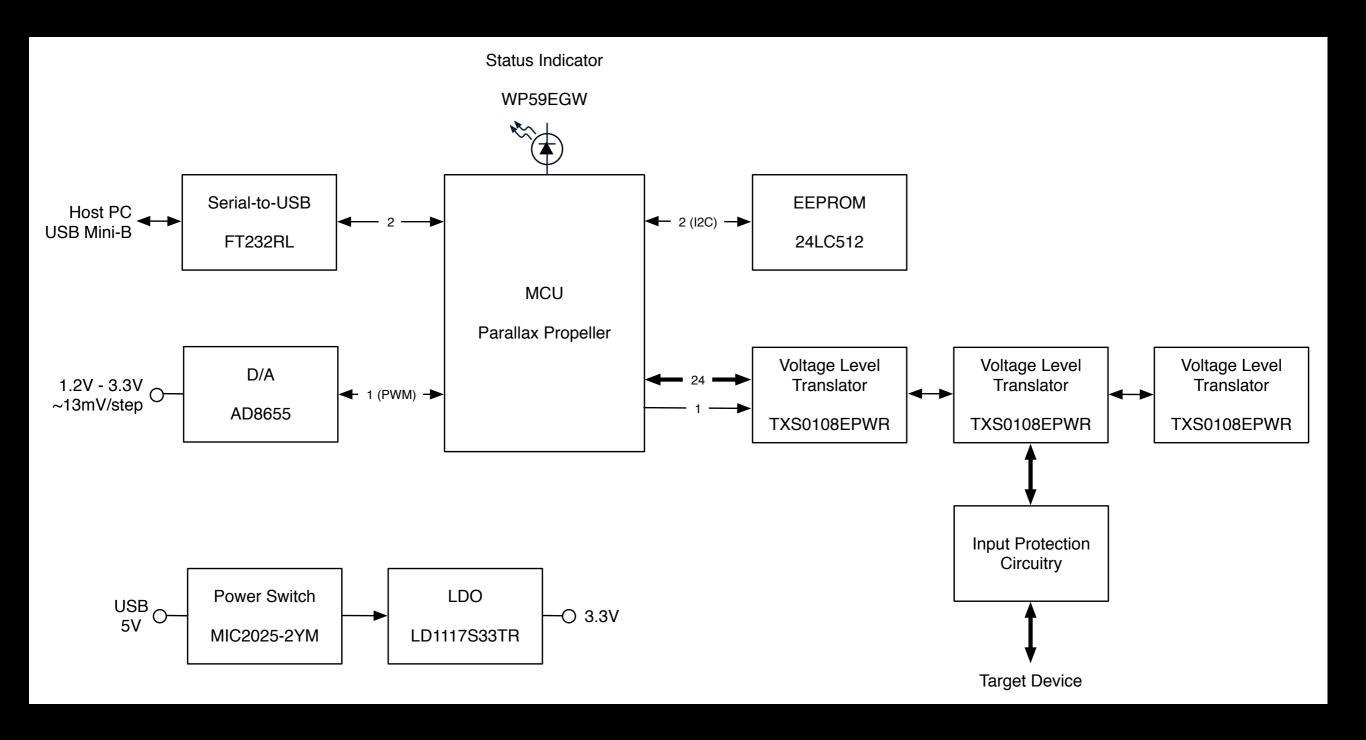
Other Art

- An Open JTAG Debugger (GoodFET), Travis Goodspeed, DEFCON 17
 - http://defcon.org/html/links/dc-archives/dc-17archive.html#Goodspeed2
- Blackbox JTAG Reverse Engineering, Felix Domke, 26C3
 - http://events.ccc.de/congress/2009/Fahrplan/ attachments/1435_JTAG.pdf

Other Art 2

- Forensic Imaging of Embedded Systems using JTAG, Marcel Breeuwsma (NFI), Digital Investigation Journal, March 2006
 - http://www.sciencedirect.com/science/article/pii/ S174228760600003X

Design Requirements


- Open source/hackable/expandable
- Simple command-based interface
- Input protection
- Adjustable target voltage
- Off-the-shelf components
- Hand solderable

Hardware

Block Diagram

PCB

Input protection

Target I/F (24 channels)

Level translation

Propeller

USB

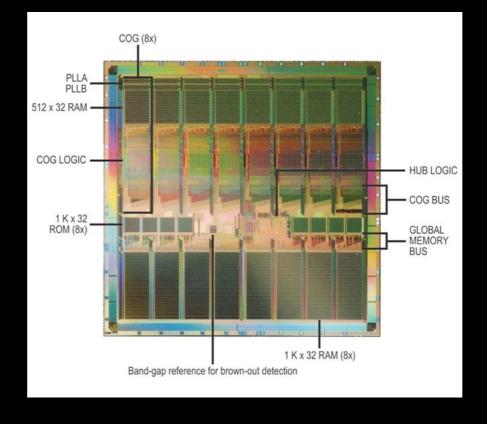
Status

*** 2x5 headers compatible w/ Bus Pirate probes, http://dangerousprototypes.com/docs/Bus_Pirate

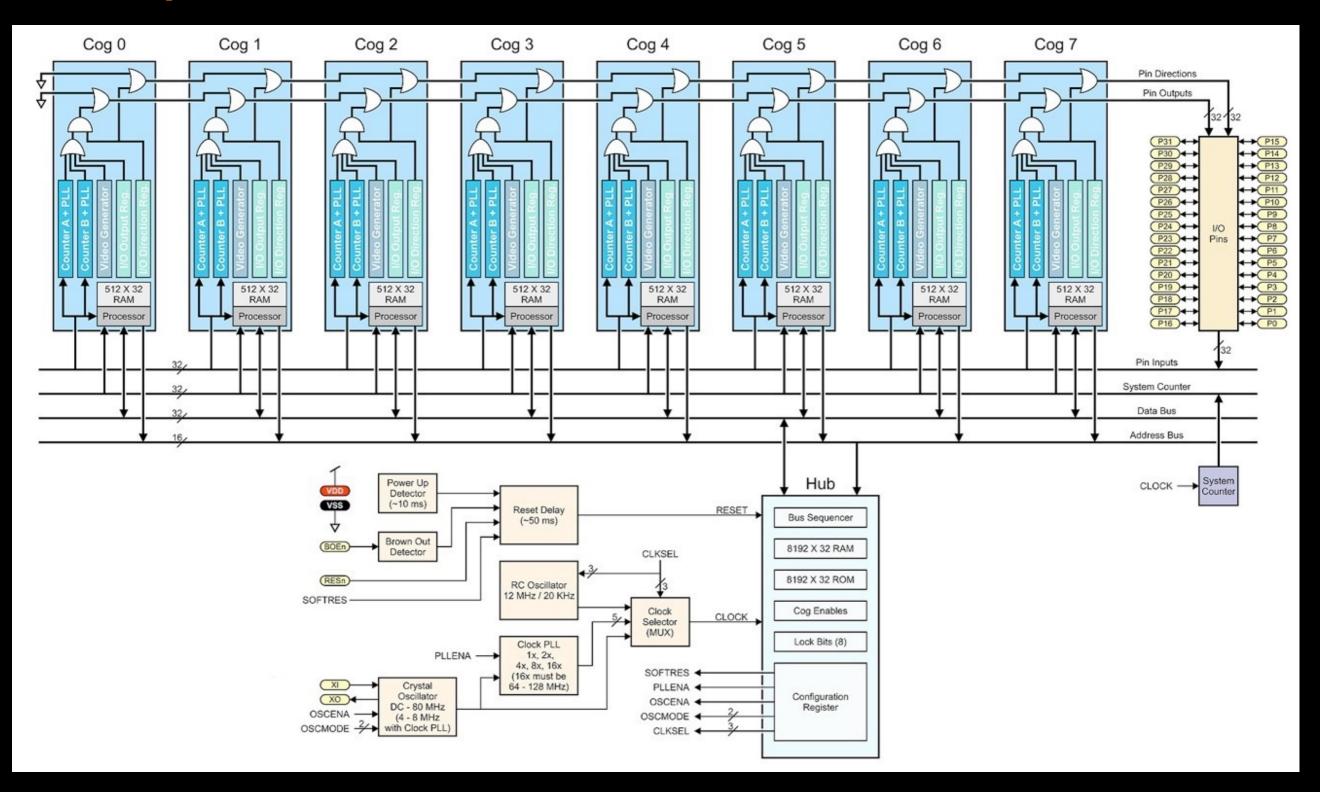
Op-Amp/DAC

- Completely custom, ground up, open source
- 8 parallel 32-bit processors (cogs)
- Code in Spin, ASM, or C

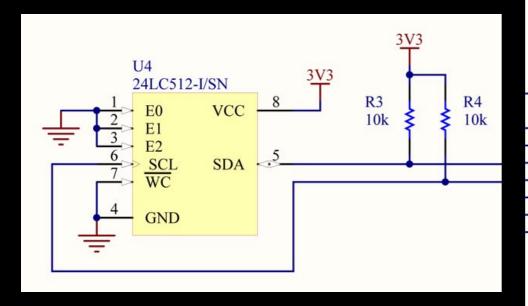
- *** INFORMATION: www.parallax.com/propeller/
- *** DISCUSSION FORUMS: forums.parallax.com
- *** OBJECT EXCHANGE: obex.parallax.com

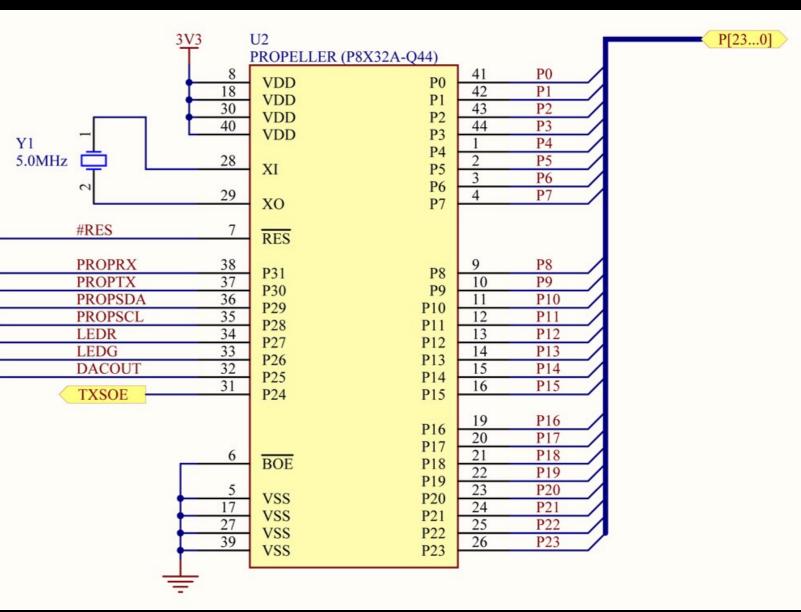

- Standard development using Propeller Tool & Parallax Serial Terminal (Windows)
- Programmable via serial interface

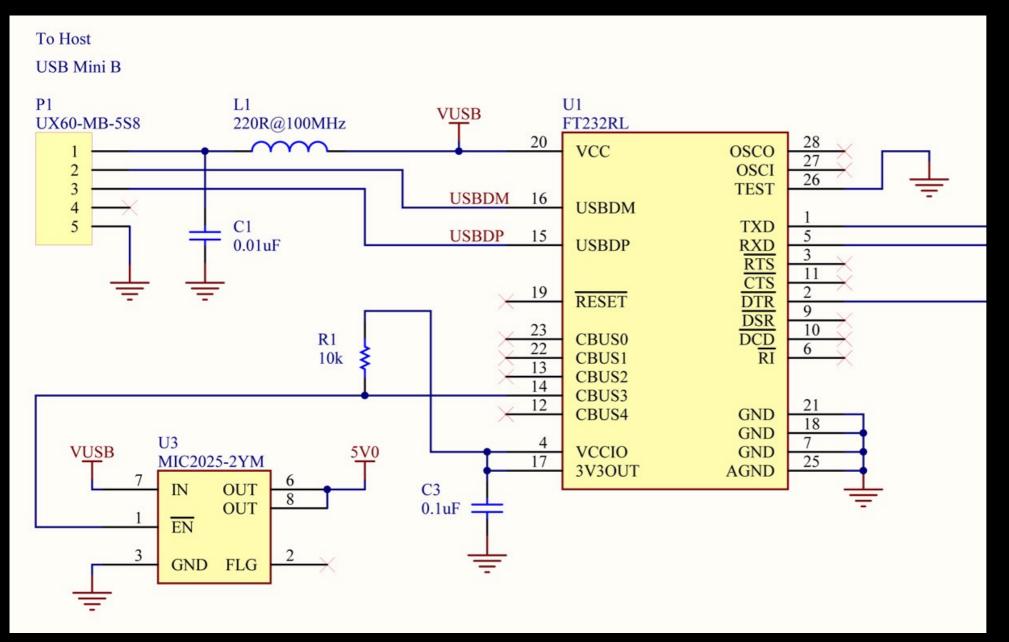
```
Propeller Tool - JTAGulator
File Edit Run Help
JTAGulator PropJTAG
                                                              _clknode = xtal1 + pll16x
                                 5 MHz clock * 16x PLL = 80 MHz system clock speed
  _xinfreq = 5_000_000
                                Ensure we have this minimum stack space available
    JTRGulator I/O pin definitions
  PROP SDA
  LED R
                     Bi-color Red/Green LED, common cathode
  LED G
             = 26
  DAC_OUT
                      Minimum number of pins/channels required for JTAG identification
                     Maximum number of pins/channels the JTRGulator hardware provides (P23..P8)
  MAX_CHAN
                      Globally accessible variables
  long vTarget
                       Target system voltage (for example, 18 = 1.8V)
  long jTDI
       i TDD
  long
       TCK
  long
  long
       TMS
  long jIDCODE
  long jIRLEN
                       Instruction Register length
OBJ
                                                       Serial communication (included w/ Parallax Propeller Tool)
               "Parallax Serial Terminal"
  ser
                                                       JTAG/IEEE 1149.1 low-level functions
  jtag
                                                       Random number generation (Chip Gracey, http://obex.parallax.com/objects/62/)
PUB main | cmd, bPattern, value
  SystemInit
  ser.Str(@InitHeader)
                               Display header; uses string in DAT section.
   Start command receive/process cycle
                                Disable level shifter outputs (high-impedance)
   -TXSDisable
   -LEDGreen
                               Set status indicator to show that we're ready
   ser.Char(ser#NL)
   −ser.Char(":")
                               Display command prompt
```

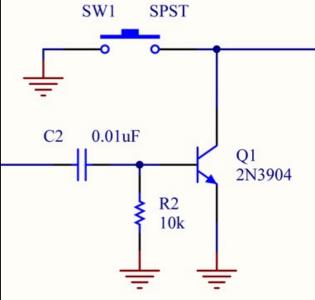


- Clock: DC to 128MHz (80MHz recommended)
- Global (hub) memory: 32KB RAM, 32KB ROM
- Cog memory: 2KB RAM each
- GPIO: 32 @ 40mA sink/source per pin
- Program code loaded from external EEPROM on

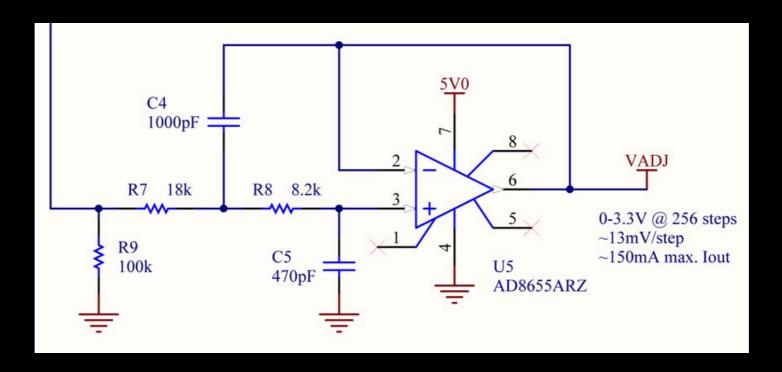

power-up





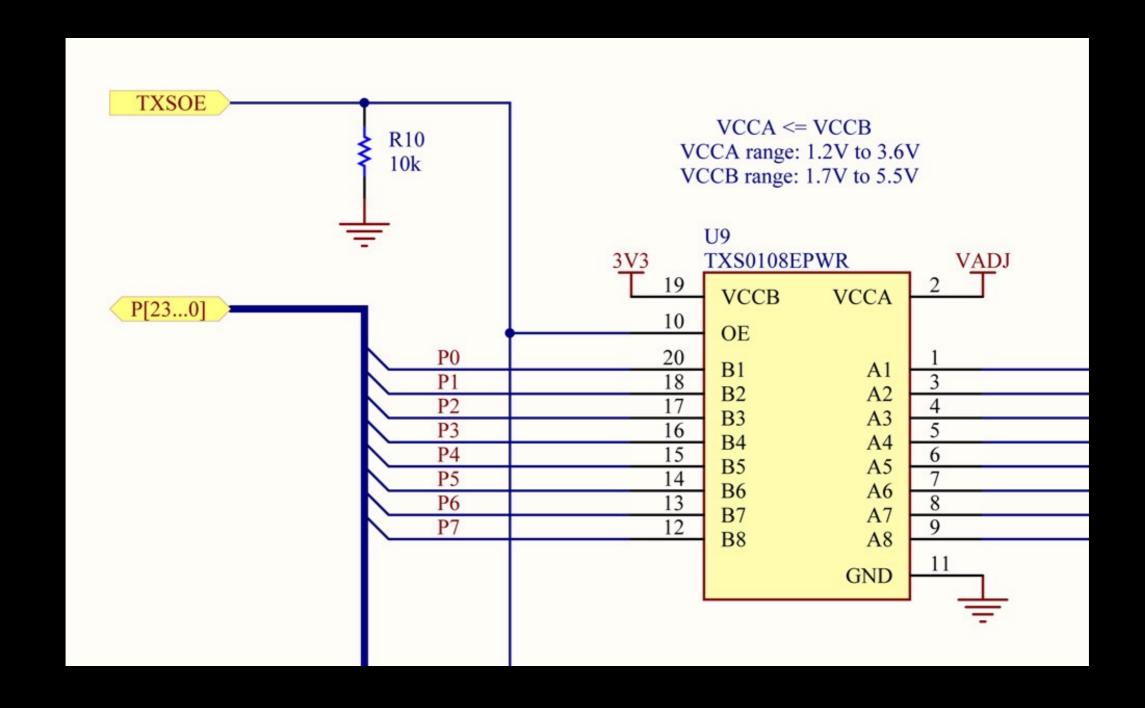

USB Interface

- Allows for Propeller programming & Ul
- Powers JTAGulator from bus (5V)
- FT232RL USB-to-Serial UART
 - Entire USB protocol handled on-chip
 - Host will recognize as a virtual serial device/COM port (Windows, OS X, Linux)
- MIC2025 Power Distribution Switch
 - Internal current limiting, thermal shutdown
 - Let the FT232 enumerate first (@ < 100mA), then enable system load


USB Interface 2

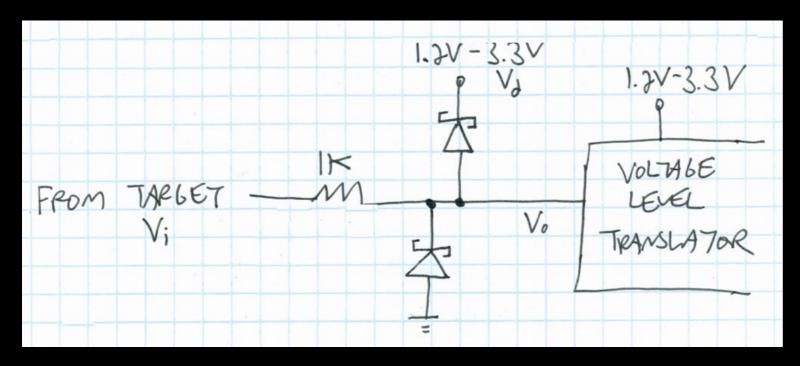
Adjustable Target Voltage (VADJ)

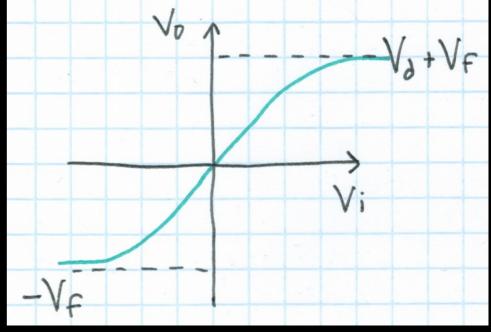
- PWM from Propeller
 - Duty cycle corresponds to output voltage
 - Look-up table in 0.1V increments (1.2V-3.3V)
- AD8655 Low Noise, Precision CMOS Amplifier
 - Single supply, rail-to-rail
 - Voltage follower configuration
 - ~150mA output current @ Vo = 1.2V-3.3V



Level Translation

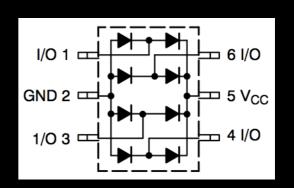
- Allows 3.3V signals from Propeller to be converted to VADJ
- Prevents potential damage due to over-voltage on target device's unknown connections
- TXS0108E Bidirectional Voltage-Level Translator
 - Designed for both open drain and push-pull interfaces
 - Internal pull-up resistors ($40k\Omega$ when driving low, $4k\Omega$ when high)
 - Automatic signal direction detection
 - High-Z outputs when OE low -> will not interfere with target when not in use

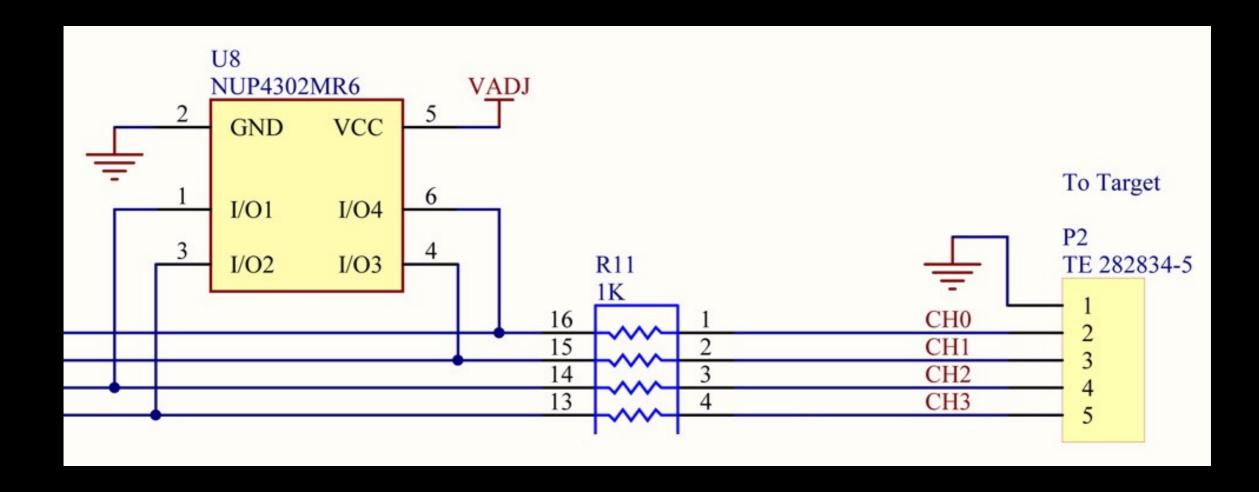

Level Translation 2



Input Protection

- Prevent high voltages/spikes on unknown pins from damaging JTAGulator
- Diode limiter clamps input if needed
- Vf must be < 0.5V to protect TXS0108Es





Input Protection 2

- NUP4302MR6 Schottky Diode Array
 - Vf @ 1mA = 0.2V typ., 0.35V max.
 - Vf @ 10mA = 0.25V typ., 0.45V max.
 - Alternate: SD103ASDM

Bill-of-Materials

Item	Quantity	Reference	Manufacturer	Manuf. Part #	Distributor	Distrib. Part #	Description
1	2	C1, C2	Kemet	C1206C103K5RACTU	Digi-Key	399-1234-1-ND	Capacitor, 0.01uF ceramic, 10%, 50V, X7R, 1206
		C3, C6, C9, C11, C12, C13, C14, C15,					
2	14	C17, C18, C19, C20, C21, C22	Kemet	C1206C104K5RACTU	Digi-Key	399-1249-1-ND	Capacitor, 0.1uF ceramic, 10%, 50V, X7R, 1206
3	1	C4	Yageo	CC1206KRX7R9BB102	Digi-Key	311-1170-1-ND	Capacitor, 1000pF ceramic, 10%, 50V, X7R, 1206
4	1	C5	Yageo	CC1206KRX7R9BB471	Digi-Key	311-1167-1-ND	Capacitor, 470pF ceramic, 10%, 50V, X7R, 1206
5	1	C7	Kemet	T491A106M016AS	Digi-Key	399-3687-1-ND	Capacitor, 10uF tantalum, 20%, 16V, size A
6	2	C8, C10	Kemet	T491A475K016AT	Digi-Key	399-3697-1-ND	Capacitor, 4.7uF tantalum, 10%, 16V, size A
7	1	D1	Kingbright	WP59EGW	Digi-Key	754-1232-ND	LED, Red/Green Bi-Color, T-1 3/4 (5mm)
8	1	L1	TDK	MPZ2012S221A	Digi-Key	445-1568-1-ND	Inductor, Ferrite Bead, 220R@100MHz, 3A, 0805
9	1	P1	Hirose Electric	UX60-MB-5S8	Digi-Key	H2960CT-ND	Connector, Mini-USB, 5-pin, SMT w/ PCB mount
10	5	P2, P3, P4, P5, P6	TE Connectivity	282834-5	Digi-Key	A98336-ND	Connector, Terminal Block, 5-pin, side entry, 0.1" P
11	3	P7, P8, P9	3M	961210-6404-AR	Digi-Key	3M9460-ND	Header, Dual row, Vertical header, 2x5-pin, 0.1" P
12	1	Q1	Fairchild	MMBT3904	Digi-Key	MMBT3904FSCT-ND	Transistor, NPN, 40V, 200mA, SOT23-3
13	5	R1, R2, R3, R4, R10	Any	Any	Digi-Key	P10KECT-ND	Resistor, 10k, 5%, 1/4W, 1206
14	1	R5	Any	Any	Digi-Key	P470ECT-ND	Resistor, 470 ohm, 5%, 1/4W, 1206
15	1	R6	Any	Any	Digi-Key	P270ECT-ND	Resistor, 270 ohm, 5%, 1/4W, 1206
16	1	R7	Any	Any	Digi-Key	P18.0KFCT-ND	Resistor, 18k, 1%, 1/4W, 1206
17	1	R8	Any	Any	Digi-Key	P8.20KFCT-ND	Resistor, 8.2k, 1%, 1/4W, 1206
18	1	R9	Any	Any	Digi-Key	P100KECT-ND	Resistor, 100k, 5%, 1/4W, 1206
19	3		Bourns	4816P-1-102LF	Digi-Key	4816P-1-102LFCT-ND	Resistor, Array, 8 isolated, 1k, 2%, 1/6W, SOIC16
20	1	SW1	C&K	KSC201JLFS	Digi-Key	401-1756-1-ND	Switch, SPST, Momentary, 120gf, 6.2 x 6.2mm, J-Lead
21	1	U1	FTDI	FT232RL-REEL	Digi-Key	768-1007-1-ND	IC, USB-to-UART Bridge, SSOP28
22	1	U2	Parallax	P8X32A-Q44	Digi-Key	P8X32A-Q44-ND	IC, Microcontroller, Propeller, LQFP44
23	1	U3	Micrel	MIC2025-2YM	Digi-Key	576-1058-ND	IC, Power Distribution Switch, Single-channel, SOIC8
24	1	U4	Microchip	24LC512-I/SN	Digi-Key	24LC512-I/SN-ND	IC, Memory, Serial EEPROM, 64KB, SOIC8
25	1	U5	Analog Devices	AD8655ARZ	Digi-Key	AD8655ARZ-ND	IC, Op. Amp., CMOS, Rail-to-rail, 220mA lout, SOIC8
26	1	U6	ST Microelectronics	LD1117S33CTR	Digi-Key	497-1241-1-ND	IC, Voltage Regulator, LDO, 3.3V@800mA, SOT223
27	6	U7, U8, U10, U11, U13, U14	ON Semiconductor	NUP4302MR6T1G	Digi-Key	NUP4302MR6T1GOSCT-ND	IC, Schottky Diode Array, 4 channel, TSOP6
28	3	U9, U12, U15	Texas Instruments	TXS0108EPWR	Digi-Key	296-23011-1-ND	IC, Level Translator, Bi-directional, TSSOP20
29	1	Y1	ECS	ECS-50-18-4XEN	Digi-Key	XC1738-ND	Crystal, 5.0MHz, 18pF, HC49/US
30	1	PCB	Any	JTAG B	N/A	N/A	PCB, Fabrication

- All components from Digi-Key
- Total cost per unit = \$50.73

Firmware (as of vI.6)

General Commands

- Set target system voltage, I.2V-3.3V (V)
- Display version information (I)
- Display available commands (M)

JTAG Commands

- Identify JTAG pinout via IDCODE scan (I)
- Identify JTAG pinout via BYPASS scan (B)
- Get Device IDs (D)
- Test BYPASS (T)
- Instruction/Data Register discovery (Y)
- Transfer Instruction/Data (X)
- Set JTAG clock speed (C)

UART Commands

- Identify UART pinout (U)
- Identify UART pinout, TXD only (T)
- UART passthrough (P)

GPIO Commands

- Read all channels, one shot (R)
- Read all channels, continuous (C)
- Write all channels (W)

On-Chip Debug Interfaces

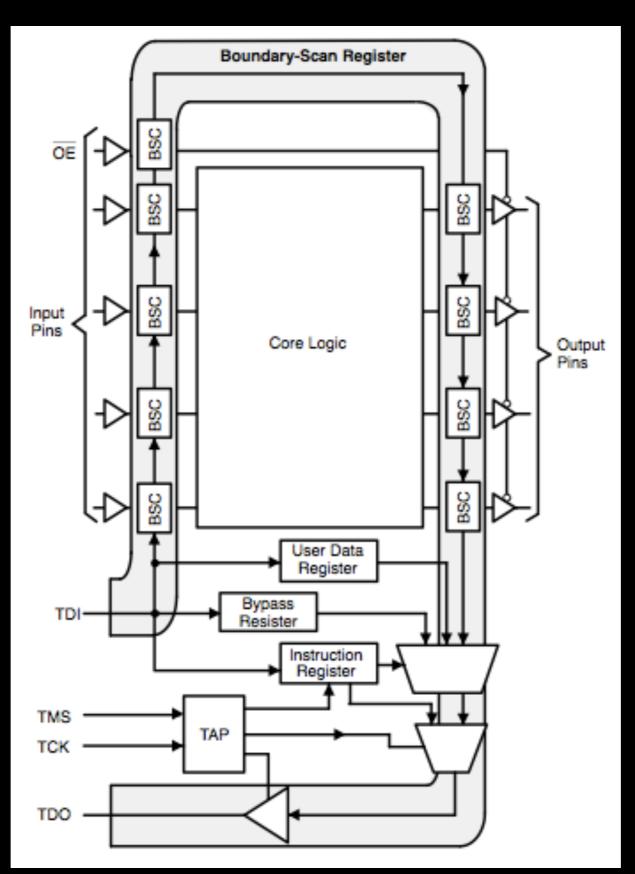
- JTAG
- UART

JTAG

- Industry-standard interface (IEEE 1149.1)
 - Created for chip- and system-level testing
 - Defines low-level functionality of finite state machine/ Test Access Port (TAP)
 - http://en.wikipedia.org/wiki/Joint_Test_Action_Group
- Provides a direct interface to hardware
 - Can "hijack" all pins on the device (Boundary scan/ test)
 - Can access other devices connected to target chip
 - Programming/debug interface (access to Flash, RAM)
 - Vendor-defined functions/test modes might be available

JTAG 2

- Multiple devices can be "chained" together for communication to all via a single JTAG port
 - Even multiple dies within the same chip package
 - Different vendors may not play well together
- Development environments abstract low-level functionality from the user
 - Implementations are device- or family-specific
 - As long as we can locate the interface/pinout, let other HW/SW tools do the rest



JTAG: Architecture

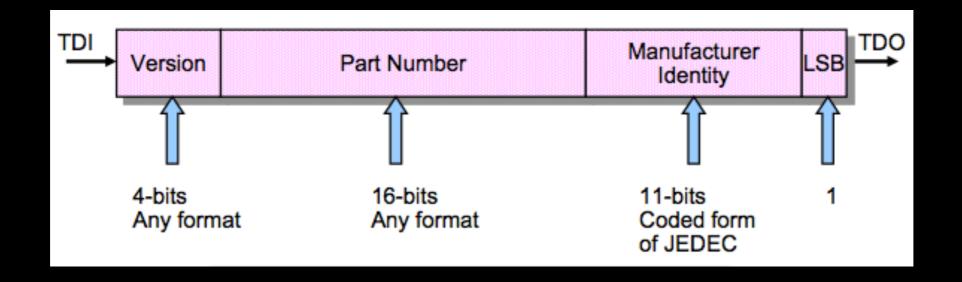
- Synchronous serial interface
 - → TDI = Data In (to target device)
 - ← TDO = Data Out (from target device)
 - → TMS = Test Mode Select
 - \rightarrow TCK = Test Clock
 - → /TRST = Test Reset (optional for async reset)
- Test Access Port (TAP) w/ Shift Registers
 - Instruction (>= 2 bit wide)
 - Data
 - Bypass (1 bit)
 - Boundary Scan (variable)
 - Device ID (32 bit) (optional)

JTAG: Architecture 2


JTAG: Protection

- Vendor/implementation specific
 - Not part of the JTAG standard
 - Should allow BYPASS, but prevent higher level function
- Ex.: Disabled in SW, traces removed/ components unpopulated, security fuse, password, challenge/response, encrypted communications
 - Possibly exploited via brute force, timing, glitch, or silicon die attack

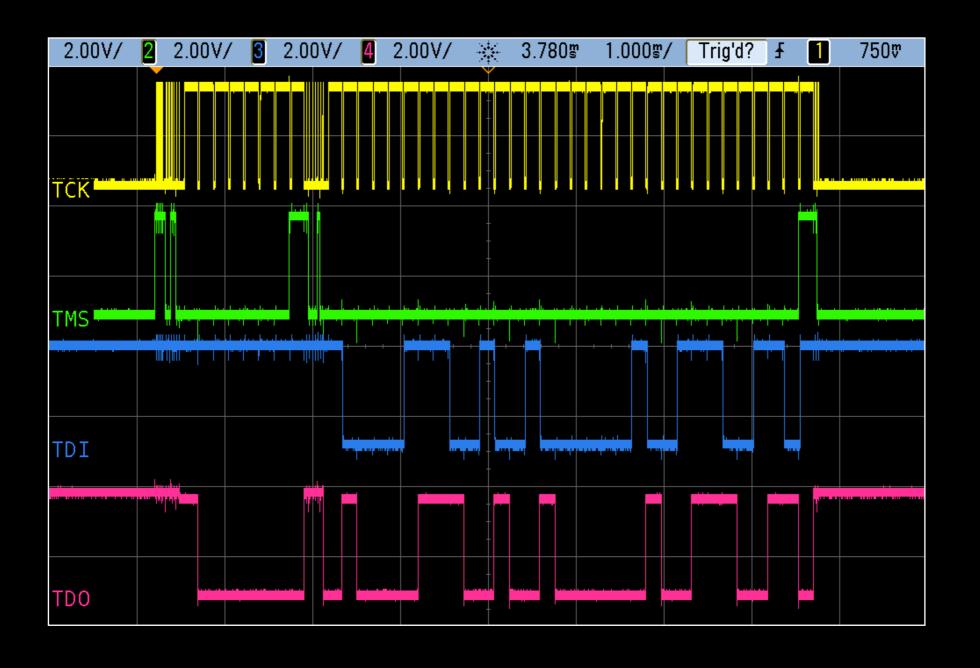
IDCODE Scan


- 32-bit Device ID (if available) is in the DR on TAP reset or IC power-up
 - Otherwise, TAP will reset to BYPASS (LSB = 0)
 - Can simply enter Shift-DR state and clock out on TDO
 - TDI not required/used during IDCODE acquisition

IDCODE Scan 2

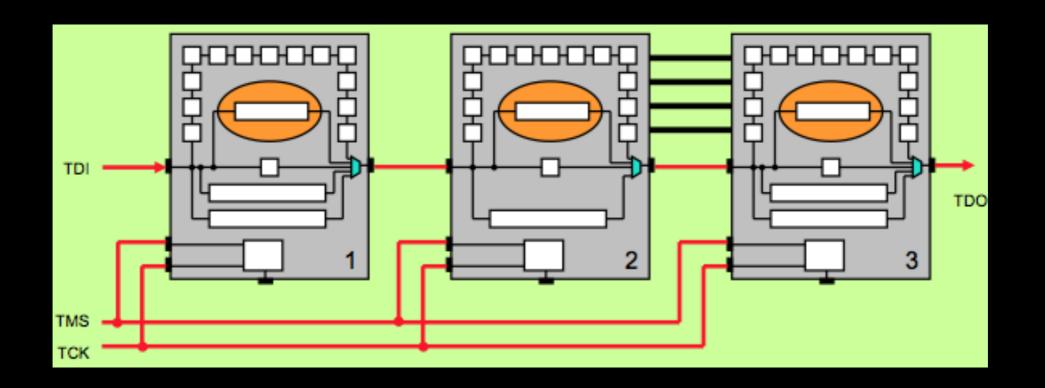
- Device ID values vary with part/family/vendor
 - Locate in data sheets, BSDL files, reference code, etc.
- Manufacturer ID provided by JEDEC
 - Each manufacturer assigned a unique identifier
 - Can use to help validate that proper IDCODE was retrieved
 - www.jedec.org/standards-documents/results/ jep106

IDCODE Scan 3


- Ask user for number of channels to use
- For every possible pin permutation (except TDI)
 - Set unused channels to output high (in case of any active low reset pins)
 - Configure JTAG pins to use on the Propeller
 - Reset the TAP
 - Try to get the Device ID by reading the DR

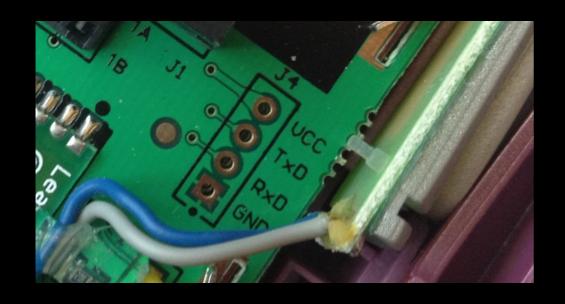
 - Otherwise...
 - Display potentially valid JTAG pinout
 - Try remaining permutations to locate /TRST by setting each pin low and checking if Device ID can still be retrieved

BYPASS Scan

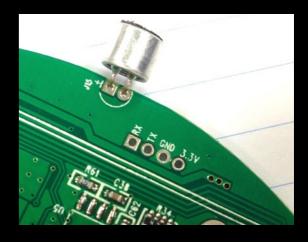

 In BYPASS, data shifted into TDI is received on TDO delayed by one clock cycle

BYPASS Scan 2

- Can determine how many devices (if any) are in the chain via "blind interrogation"
 - Force device(s) into BYPASS (IR of all 1s)
 - Send 1s to fill DRs
 - Send a 0 and count until it is output on TDO


BYPASS Scan 3

- Ask user for number of channels to use
- For every possible pin permutation
 - Set unused channels to output high (in case of any active low reset pins)
 - Configure JTAG pins to use on the Propeller
 - Reset the TAP
 - Perform blind interrogation
 - If number of detected devices > 0...
 - Otherwise...
 - Display potentially valid JTAG pinout
 - Try remaining permutations to locate /TRST by setting each pin low and checking if device(s) can still be detected



UART

- Asynchronous serial interface
 - → TXD = Transmit data (from host to target)
 - ← RXD = Receive data (from target to host)
 - → DTR, DSR, RTS, CTS, RI, DCD = Control signals (uncommon for modern implementations)
- Many embedded systems use UART as debug output/console/root shell

UART 2

- Universal Asynchronous Receiver/Transmitter
 - No external clock needed
 - Data bits sent LSB first (D0)
 - NRZ (Non-Return-To-Zero) coding
 - Transfer speed (baud rate) selectable
 - http://en.wikipedia.org/wiki/Asynchronous_serial_ communication

1	2	3	4	5	6	7	8	9	10	11
Start bit	5–8 data bits								Stop bit(s)	
Start	Data 0	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Stop	

*** Start bit + Data bits + Parity (optional) + Stop bit(s)

UART 3

UART Scan

- 8 data bits, no parity, I stop bit (8NI)
- Baud rates stored in look-up table
 - 300, 600, 1200, 1800, 2400, 3600, 4800, 7200,
 9600, 14400, 19200, 28800, 31250, 38400, 57600,
 76800, 115200, 153600, 230400, 250000, 307200

UART Scan 2

- Ask user for desired output string (up to 16 bytes or 8 bytes in hex using \x prefix)
- Ask user for number of channels to use
- For every possible pin permutation
 - Configure UART pins to use on the Propeller
 - Set baud rate
 - Send user string
 - Wait to receive data (20ms maximum per byte)
 - If any bytes received, display potentially valid UART pinout and data (up to 16 bytes)

Possible Limitations

- No OCD interface exists
- OCD interface is physically disconnected
 - Cut traces, missing jumpers/0 ohm resistors
- OCD interface isn't being properly enabled
 - System requires other pin settings
 - Password protected
- Strong pull resistors on target prevent JTAGulator from setting/receiving proper logic levels
- Could cause target to behave abnormally due to "fuzzing" unknown pins

Future Work

- Support for OpenOCD
 - Would allow direct manipulation of target device after JTAG pinout detection
- Other interfaces
 - TI Spy-Bi-Wire, ARM Serial Wire Debug,
 Microchip ICSP, Atmel AVR ISP, Freescale BDM,
 LPC Bus, Flash memory
- Level-shifting module?
 - Target voltage > 5V for industrial/SCADA equipment

Get It

- www.jtagulator.com
 - *** Schematics, source code, BOM, block diagram, Gerber plots, photos, videos, other documentation
- www.parallax.com
 - *** Assembled units, accessories
- http://oshpark.com/profiles/joegrand
 - *** Bare boards

A Poem

to take an object from made to modified customize interfaces between past andfew truths can maintain their veneer in the face of signal feedbacks size of diamend screwariver doesnt fit circuit exit enter the dragnet on all sides caught wwith tools debugging as form of how to gain access to what you have but cant quite double blind verify ascertain make salient discoveries about how electricity keeps oems@zachhouston.com itssecrets from anything thats not luckily everything electric is jtagulator take apart a ball of and find

99

The End.