
### Behind the Scenes of the DEFCON Badge

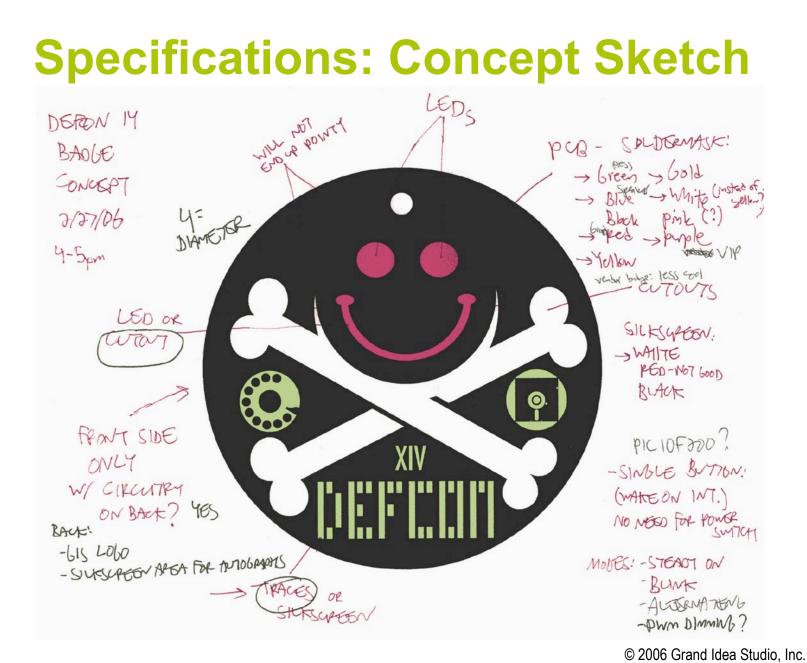
DEFCON 14 Friday, August 4

Joe Grand (Kingpin) joe@grandideastudio.com

# **Thanks for Waking Up Early!**

- We had to keep actual session title a secret until the badge was released
- We'll look at the entire development process of the badge from conception to production units
- Read the short story in the DEFCON program
- Sorry if you were looking for a different kind of hardware hacking!
- Interrupt me and ask questions!




## **Development Process in a Nutshell**

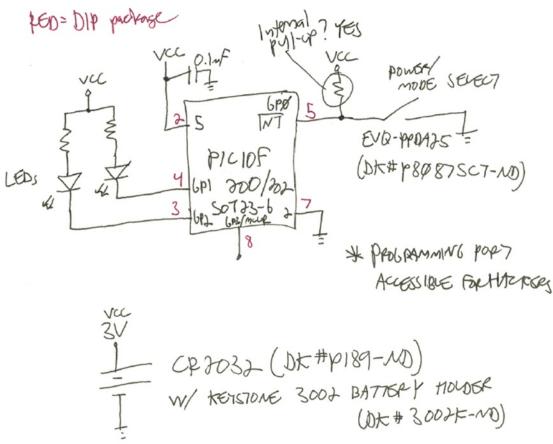
- Define the Specifications
- Preliminary Schematic
- Initial Breadboarding
- Code Development
- Final Schematic
- Create Bill-of-Materials
- Printed Circuit Board (PCB) Design
- Prototype Testing
- Parts Sourcing/Acquisition
- Place the Quantity Order

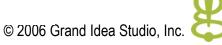
# **Specifications: Initial Proposal**

- The Dark Tangent and Ping had a good idea of what they wanted before they called me
  - Quantity of 6,055 (that's a lot!)
  - Total cost of under \$5
  - Badge in the shape of DEFCON logo
  - Blinky LEDs
  - Battery needs to last at least the length of DEFCON
  - Must look wicked pissah (east coast) and/or totally rad (west coast)







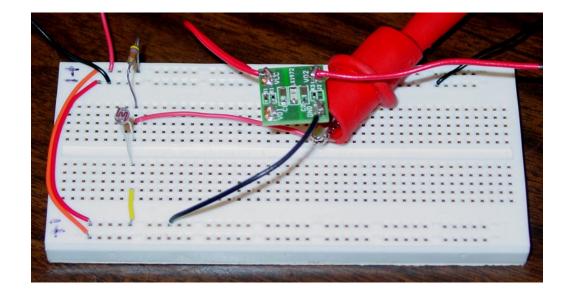


# **Specifications: Defined Feature Set**

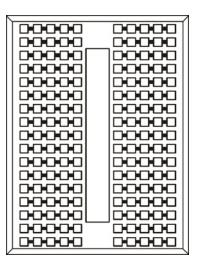
- After some back-and-forth discussions, we settled on the functionality and artistic elements:
  - DEFCON logo and icons on top copper layer
  - Crossbones and smile to be cutout
  - Different soldermask colors for different DEFCON clientele
  - Single button for user control (no power switch)
  - Multiple LED states:
    - Both Steady On
    - Both Blink
    - Alternating
    - Random (Pseudo-random, actually)

### **Preliminary Schematic**

DEFCON 14 CIPCUT BOARD BADGE 2788/06 PRELMINARY SCATEMATIC

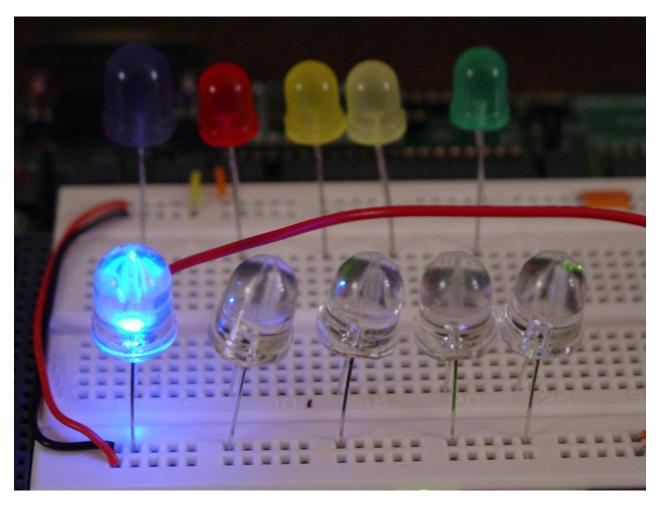






## **Breadboarding/Code Development**

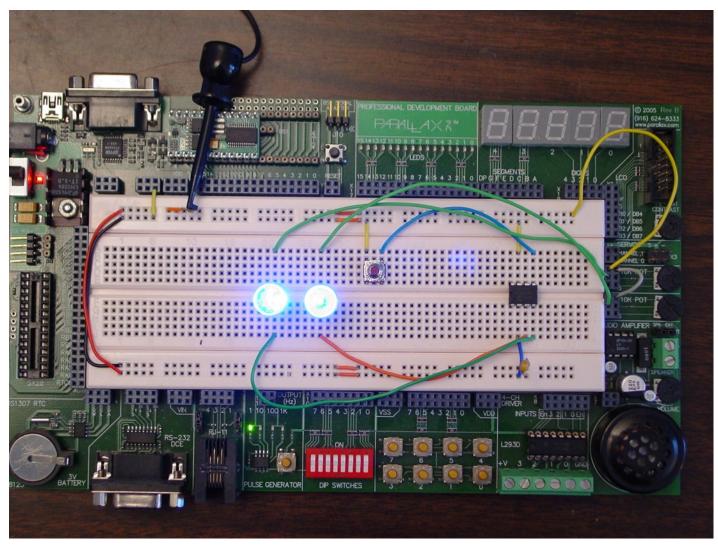
- 1. Turn preliminary sketch into something physical
- 2. Evaluate different types of LEDs
- 3. Write the embedded code for the Microchip PIC10F202 processor
- 4. Fine-tune and tweak hardware and code until it functions as specified

# **Breadboarding**


- Breadboarding: A method to build circuits without soldering or creating custom PCBs
  - The ideal method of prototyping
  - Utilizes a plug board and 24AWG solid wire
  - Not recommended for high frequency/RF circuits





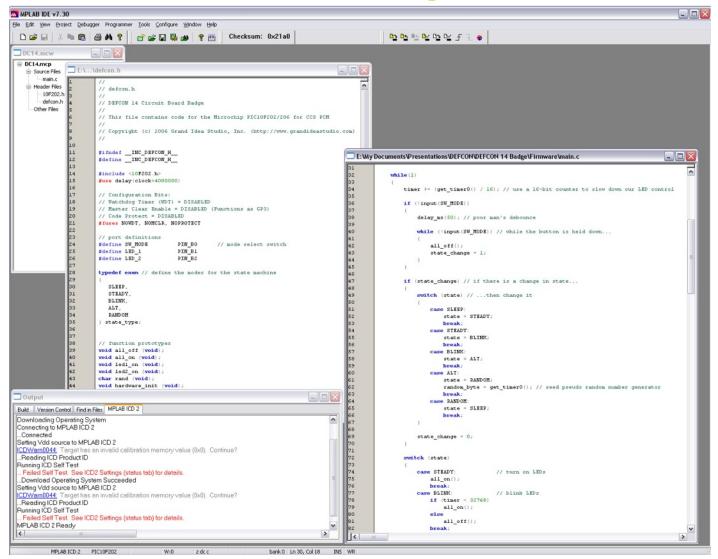



### **Breadboarding: LED Evaluation**

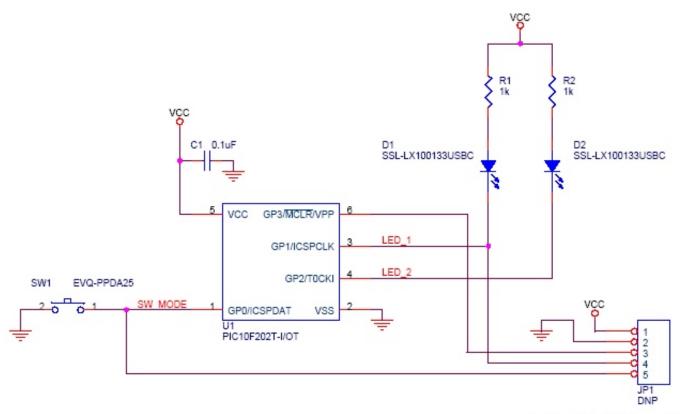




### **Breadboarding: Prototype Circuitry**

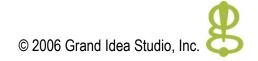



# **Code Development**


- Used CCS PCM compiler for Microchip PIC10F202 with MPLAB IDE v7.30
  - EX.: www.ccsinfo.com
  - Free SW development tools are available, too (www.microchip.com)
- Simple state machine

```
typedef enum
{
    SLEEP,
    STEADY,
    BLINK,
    ALT,
    RANDOM
} state type;
```

### **Code Development 2**



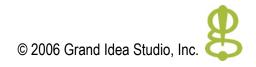

### **Final Schematic**



In-Circuit Serial Programming






# **Drawing Schematics**

- Many professional tools available, mostly in the \$5k-\$10k range
  - Ex.: Cadence/OrCAD Capture, www.orcad.com
  - Ex.: Altium/Protel DXP, www.altium.com
- Demo licenses for some professional tools
  - Usually expire after 30 days
- Some fully-free software available
  - Ex.: gEDA, http://geda.seul.org, complete opensource PCB, schematic capture, and simulation for Unix platforms



# **Drawing Schematics 2**

- Microsoft Visio can perform rudimentary schematic capture using common symbols
  - Cannot easily create custom parts
  - Cannot export a Netlist for use with PCB design



### **Bill-of-Materials**

- Cost issues (had to keep around \$5/unit total)
- Had to make sure that all selected components were available in large quantities
- Used trusty Digi-Key and Mouser catalogs to create first draft BOM
- Enlisted Future Electronics to help with cost reduction and large quantity ordering
  - Typically 30% of the cost of Digi-Key, Mouser, etc.
  - More on this later...



### **Bill-of-Materials 2**




DEFCON 14 Circuit Board Badge Bill-of-Materials Document Version 1.3, April 17, 2006

#### Note: BOM is for budgetary purposes only and does not include shipping costs or taxes

Build Quantity 6055

| Item | Quantity | Reference | Manufacturer     | Manuf. Part #    | Distributor | Distrib. Part #      | Description                                         | Unit Price | Per Build | MIN/ MULT  | Extended Price |
|------|----------|-----------|------------------|------------------|-------------|----------------------|-----------------------------------------------------|------------|-----------|------------|----------------|
| 1    | 1        | BT1       | Keystone         | 3002TR           | FAI         | 3002TR               | Battery holder, 20mm coin cell, SMD                 | \$0.1050   | 6000      | 500/ 500   | \$630.00       |
|      |          |           |                  |                  | Mouser      | 534-3002TR           |                                                     | \$0.6100   | 60        |            | \$36.60        |
| 1a   | 1        | N/A       | Renata Batteries | CR2032           | FAI         | CR2032               | CR2032 Lithium 3V Coin Cell Battery (225mAh)        | \$0.2500   | 6075      | 500/ 25    | \$1,518.75     |
| 2    | 1        | C1        | AVX              | 0603YC104JAT2A   | FAI         | 0603YC104JAT2A       | 0.1uF bypass capacitor, 16V, X7R, 0603              | \$0.0095   | 8000      | 4000/ 4000 | \$76.00        |
| 3    | 2        | D1,D2     | Lumex            | SSL-LX100133USBC | FAI         | SSL-LX100133USBC     | 10mm LED, Blue water clear, 800mcd, 3.5V            | \$0.7000   | 12200     | 100/ 100   | \$8,540.00     |
| 4    | 2        | R1,R2     | Any              | CRCW0603-102JRT1 | FAI         | CRCW0603-102JRT1     | 1.0k, 5%, 1/10W, 0603                               | \$0.0016   | 15000     | 5000/ 5000 | \$24.00        |
| 5    | 1        | SW1       | Panasonic        | EVQ-PPDA25       | Digi-Key    | P8087STR-ND          | SPST momentary pushbutton switch, 240gf, 50mA, SMD  | \$0.3250   | 6060      |            | \$1,969.50     |
| 6    | 1        | U1        | Microchip        | PIC10F202T-I/OT  | Digi-Key    | PIC10F202T-I/OTTR-ND | PIC Microcontroller, SOT23-6 (includes programming) | \$0.9416   | 6055      |            | \$5,701.39     |
| 7    | 1        | PCB       | e-Teknet         | DEFCON 1.0       | e-Teknet    |                      | PCB (includes assembly and testing)                 | \$2.3100   | 6055      |            | \$13,987.05    |

Total \$32,483.29 Approximate Per Unit Cost \$5.36



- Three general methods to create custom PCBs:
  - 1. Homebrew w/ PCB etching kit
  - 2. PCB prototyping systems
  - 3. Professional fabrication
- Printed Circuit Board (PCB) etching kit
  - Low-cost method for quick homebrew hacks (practically instant gratification)
  - Uses hazardous chemicals (ferric chloride) which etch away any copper on the circuit board that isn't protected by resistant ink or toner
  - Ex.: MAKE Magazine issue 2



#### November 1993



### April 2000





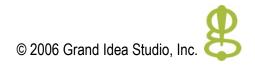
- PCB prototyping systems
  - Highly specialized, accurate CNC machine
  - Allows quick in-house creation of prototype PCBs
  - > \$10k for a decent system
  - Not practical for most hardware hacking purposes
  - Ex.: LPKF Laser & Electronics (www.lpkf.com) and
     T-Tech (www.t-tech.com)





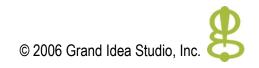
- Professional fabrication
  - More convenient and better quality than homebrew, why bother with dangerous chemicals anymore?
  - Can handle very fine pitch, tight tolerances, etc.
  - Prototype and production quantities
  - Competition between firms leads to good deals for us
    - Prototype specials
    - On-time guarantees
    - Price matching
  - 2-layer board costs ~\$20-30 each (~\$1-\$5 in quantity)
  - 4-layer board costs ~\$50 each (~\$3-\$10 in quantity)




- Many production houses available online
  - e-Teknet, www.e-teknet.com
  - Advanced Circuits, www.4pcb.com
  - Sierra Proto Express, www.sierraprotoexpress.com
  - AP Circuits, www.apcircuits.com
  - Express PCB, www.expresspcb.com
- e-Teknet fabricated and assembled the prototype and production DEFCON badges
  - Check them out in the exhibitor area...
  - (No, I didn't get paid to put this in here!)

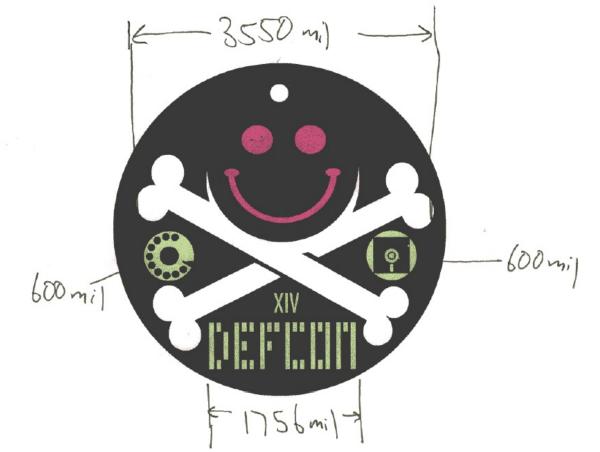


- Design tools…
  - Many professional tools available, some upwards of \$5k-\$10k
    - Ex.: Altium/Protel DXP, www.altium.com
    - Ex.: McCAD EDS, www.mccad.com, 200 pin limit for free
  - Some fully-free software available
    - Ex.: gEDA, http://geda.seul.org, complete open-source
       PCB, schematic capture, and simulation for Unix platforms
    - Ex.: Protel EasyTrax, www.protel.com/downloads/files/ easytrax.zip, DOS freeware version, complete PCB layout package with output support for printers and Gerber
    - Ex.: Express PCB offers a free captive design tool for use with their own manufacturing

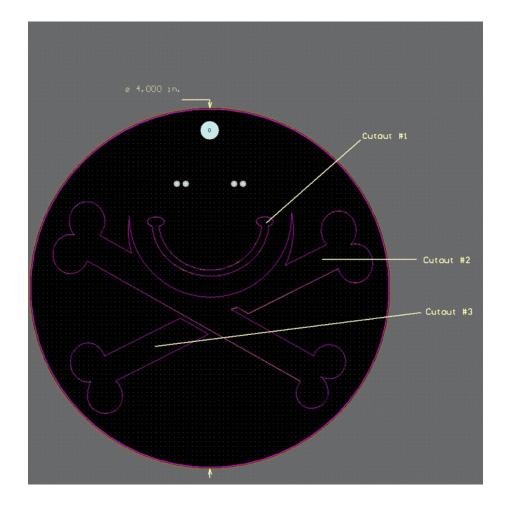


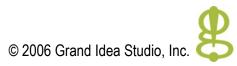

- High-level process:
  - 1. Create schematic
  - 2. Output Netlist
  - 3. Import Netlist into PCB design software
  - 4. Create PCB
  - 5. Output Gerber plots
  - 6. Submit Gerber plots to PCB fab house



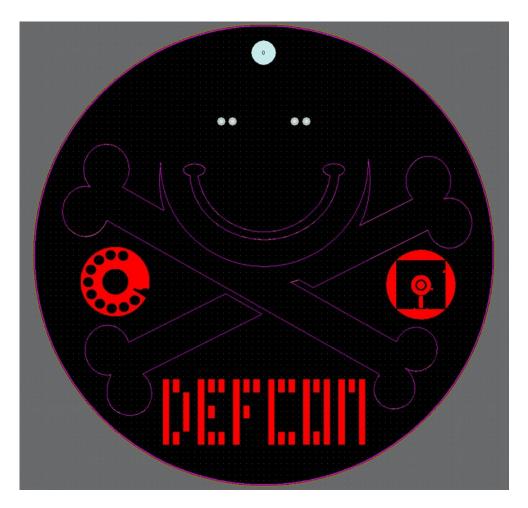

# Badge PCB Design: Process

- 1. Verify desired size of badge & artistic elements
- 2. Create mechanical outline of board
- 3. Add logos to top side copper
- 4. Place components in desired locations
- 5. Import Netlist (based on final schematic)
- 6. Route board (keep all traces on bottom side)
- 7. Add logos to bottom side silkscreen
- 8. Run verification tests
- 9. Output Gerber plots





# **Badge PCB Design: Verifying Sizes**

Y= BADGE ACTUAL SIZE

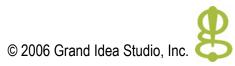




# **Badge PCB Design: Mechanical Layer**






### **Badge PCB Design: Top Layer**





### **Badge PCB Design: Bottom Layer**





### **Badge PCB Design: Mock-up**





# **Prototype Testing**

- Before placing large order of PCBs, need to verify that the design functions as expected
- Ordered a few bare prototype PCBs from e-Teknet
  - Had careful discussions with them to ensure that our complicated cutout areas and features were conveyed properly to their Chinese factory
  - I'm sure they're sick of me by now! ③
- Hand-assembled some boards
- Sent to The Dark Tangent and Ping for final sign-off



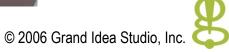
### **Prototype Testing: Current Measurements**

DEFON M BADGE - PROTOTYPE CURRENT MEASUREMENTS

3/17/06



### Prototype Testing: Current Measurements 2


CPro32=3VC 225mAn to 21/

BASED ON IDEAL GNOITIONS; CONTINUOUS USE: SLEEP= JS6.8 TEARS → Battery work setf-dischage before then] STEADY = JSS.7Hours = 10.6 DATS 110.3 Hours = 4.6 DATS BUNK/ALTERNATE = 401.78 Hours = 16.7 DATS 196.7 Hours = 8.2 DATS PAMOOM = J47.25 Hours = 10.3 DATS

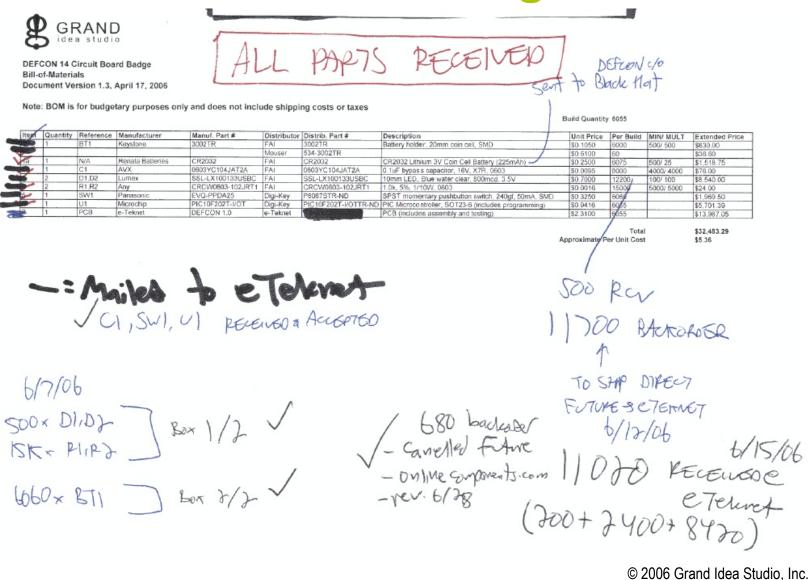


### Joe says "A-OK!"





# **Parts Sourcing**


- Ended up being the most difficult/time consuming part of the process
- On strict deadline to obtain parts for 6,055 units and ship to e-Teknet to begin assembly
  - No parts == No badges for DEFCON! ☺
- Placed all quantity orders with Future Electronics
- Since Future (and most large distributors) has minimums and multiple requirements, ordered remaining pieces from Digi-Key & Mouser
- Used Digi-Key to purchase and program code into PIC10F202s

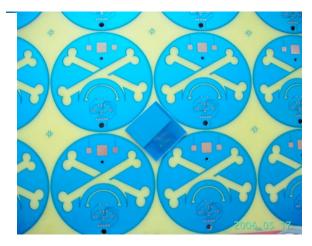
# Parts Sourcing 2

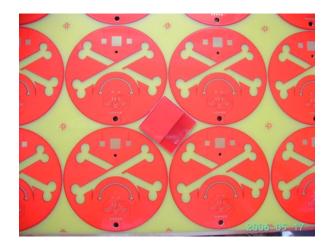
- Issues w/ Future:
  - Misquoted leadtimes
    - "They'll be here in 3 weeks" parts arrive after 6
  - "Lost" parts
    - Only 500 LEDs were shipped sales couldn't find the other 11,700!?
  - Slow shipping
    - What part of "I need these parts tomorrow" do you not understand?
- After much pressure, I was "upgraded" to a more competent sales contact
- All problems were finally resolved!




### **Parts Sourcing 3**




# **Quantity Order**


- Placed 6,055 unit order with e-Teknet
- While components were being acquired, they helped us decide on the seven soldermask colors and began PCB fabrication
- Sent them BOM, Parts Placement, and Test Procedure to aid in assembly
- Tested and approved First Articles
- Pulled the trigger on the full quantity build!

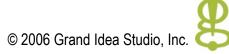


### **Quantity Order: Color Samples**



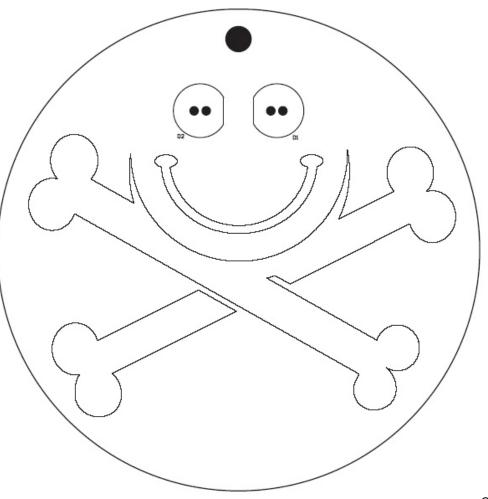


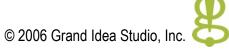






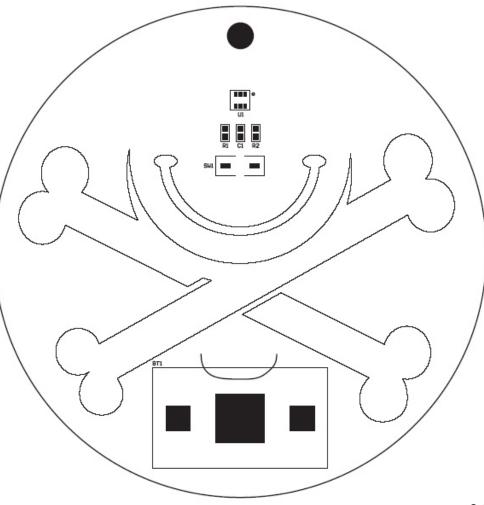


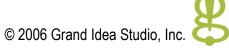





**Quantity Order: Final Colors** 7/6/06 5/30/06 up interior DEFOON 14 BADDE - FINAL COLORES & QUANTITIES Quantit 0/05 ype White S185 HUMAN GOON 250 Pes Green (Stinderd) PRESS 200 SPEAKER Blve #60 200 Pupple #73 VENDOR 100 VIP Black 100 JOE/VUTRA 06 0 Gold Sand TOTAL: 6055



### **Parts Placement**


DC14 Rev. 1.0 Parts Placement Top



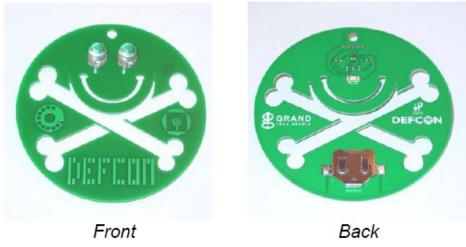



### **Parts Placement 2**

DC14 Rev. 1.0 Parts Placement Bottom










#### **DEFCON 14 Badge Revision 1.0**

System Level Test Procedure

J. Grand, April 9, 2006

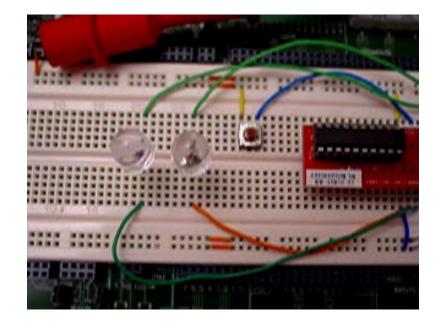


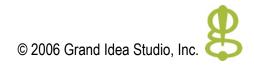


#### Test Procedure:

 Insert CR2032 lithium coin cell battery or apply power (+3V DC) to the following points:





- 2. Press and release momentary switch on back of PCB
- 3. Both LEDs on front should illuminate:



- 4. Press and release momentary switch on back of PCB
- 5. Both LEDs on front should blink on and off together
- 6. Press and release momentary switch on back of PCB
- 7. LEDs on front should alternate on and off (left on, right on, left on, etc.)
- 8. Press and release momentary switch on back of PCB
- 9. LEDs on front should illuminate in some random order
- 10. Press and release momentary switch on back of PCB
- 11. Both LEDs on front should be off
- 12. Remove power
- 13. Test complete







### **First Article Approval: Front**





### **First Article Approval: Back**





# **DEFCON Badge Hacking Contest**

- What can you do with two LEDs, a switch, some discretes, and a Microchip PIC10F202?
- The most obscure, obscene, or mischievous badge hack will be recognized and awarded at the DEFCON Award Ceremonies on Sunday
- Microchip development tools are available at the show for your use
- Find me later if you want to check out what I've done to mine <sup>(2)</sup>



### **Thanks for Coming!**



### Joe Grand (Kingpin) joe@grandideastudio.com